3 Ways to Introduce Smart Lighting into Commercial Buildings

2022-05-14 18:33:49 By : Ms. Gena Tong

If you’re interested in implementing smart technology into your commercial building or office space, switching out your light fixtures is a good way to get started. There are many practical benefits to smart lighting systems that will make them a staple in buildings of the future. It’s also easier and less expensive than you might think to switch from traditional LED light fixtures to a smart lighting system and to optimize your building’s energy consumption.

Smart lighting allows your LED lights to be controlled remotely. Before power is distributed to an LED fixture in a smart lighting system, the connected software communicates with the fixture to let it know what it should be doing and when. This software is controlled by an app, a smart home assistant, or with a wireless switch, so you can control or automate your lights remotely. There are many benefits to this kind of lighting:

Let’s take a look at three different methods to implement smart lighting into your commercial building. We will discuss the advantages and disadvantages of each so that you can select the best option for your use case.

PoE is a method of delivering both power and data/information over ethernet cables. These cables are also known as category cables or CAT series cables, i.e. CAT5 or CAT6 cables. Common devices that use PoE are VoIP telephones, Wi-Fi routers, and security cameras. It’s worthwhile to note that not all devices are compatible with PoE. Devices like LED lights need to be either PoE LED lights specifically (which are more expensive than generic LED lights) or generic LED lighting fixtures must be retrofitted to be compatible with a PoE system. This is part of what makes PoE the most expensive of the three options.

There are several benefits associated with PoE:

The main disadvantage of PoE is the cost to implement it. However, there are several others:

PoE is an energy efficient solution with many benefits, but its cost can be a limitation for many people. The next two options do not require the expensive implementation costs of PoE, such as ethernet cables, switches, and PoE-ready devices.

Option #2 involves retrofitting a low voltage (under 60 volts) power distribution system to enable smart lighting. Both PoE and option #2 conserve energy because of their automation capabilities, and because they distribute low voltage DC power.

But how does DC power intrinsically conserve energy?

In short, standard building electrical systems supply alternating current (AC) power, but 80 percent of our devices need direct current (DC) power. Every device that needs DC power comes equipped with an integrated converter that converts the AC power they get into the DC power they need. However, every time a conversion is made, energy is wasted in the form of heat. DC power distribution systems convert energy by distributing DC power to devices that require it so that all unnecessary conversions are eliminated. For this reason, implementing a DC power distribution system can save a commercial building up to 20 percent in energy consumption (and costs).

‍A DC power distribution system can be as simple or as complex as you would like. The simple solution is to connect a high efficiency AC to DC power converter to your electrical grid. This way power is converted at the source to DC power and distributed to all your connected building systems.

A bit more complicated approach would be to give your power distribution system smart capabilities. This can be done by adding intelligent control nodes to your new DC power distribution system. These nodes would have software integrated into them that wirelessly collect and transmit data via a mesh network. Next, connecting sensors to the system allows for data to be collected about your connected building systems, such as lights. And, of course, you’re going to want a user-friendly platform to monitor, track and analyze this collected data. This platform (sometimes called a digital twin) should also be interactive so that you can control, automate, and optimize building systems that you’re collecting data on. This way you can remotely control things like the brightness of your lights.

This is the least expensive method of implementing smart lighting into your building. This option doesn’t require any additional cabling, although it doesn’t save as much energy. If you’re just looking to get started with smart lighting and save money through its automation capabilities, this might be the option for you.

One way to go about this method is by replacing all your light bulbs with smart bulbs. However, if you use fixtures rather than bulbs (meaning that your lighting is in the ceiling controlled by a switch) you might be better off replacing the switches themselves with smart switches and dimmers.

Another way to choose between installing smart bulbs or switches is to consider that smart bulbs can be controlled individually, whereas if you decide to go with a switch, you can control all the lights on that circuit. The drawback with the smart bulb route is that it can be expensive depending on how many bulbs you plan to replace with smart bulbs. However, smart switches are far more complicated to install, as you must connect them to your main power supply. This means turning off the power and dealing with the exposed wire behind the switch (a job for a qualified electrician).

Another thing to consider is if you want to monitor, control and automate all of your connected smart devices via an app, or if you’re only planning on making your lighting system smart. If you’re simply looking to install a smart lighting system, a smart switch will probably suit your needs. However, if you also want to convert other devices in your home, office or building into smart devices, a hub would allow you to pull all of these devices together under one user interface. Just make sure the hub you choose is compatible with all your smart devices.

As a reminder, this option will provide you with the energy savings that come from automating your LED lighting system, but your building will still be wasting about 20 percent of its energy with unnecessary conversions from AC to DC power.

Both PoE and intelligent low voltage DC power distribution systems conserve energy through the use of DC power and automation capabilities. However, an intelligent AC power distribution system is the most widespread smart lighting solution, but it only saves energy through its automation capabilities. This means you would still be wasting about 20 percent in energy costs due to power conversions. On top of that, PoE is the most expensive system between option #1 and #2. It is for this reason that if you’re looking for a smart lighting system that allows you to monitor, control, automate and optimize your energy use, without replacing any of your existing building systems, option #2 would be the most simple and cost-effective to implement.